INTRAMOLECULAR [3+2] CYCLOADDITIONS OF FUNCTIONALIZED AZOMETHINE YLIDES

PAT N. CONFALONE * AND RICHARD A. EARL

CONTRIBUTION NUMBER 3995 CENTRAL RESEARCH AN0 DEVELOPMENT DEPARTMENT E. I. DU PONT DE NEMOURS a COMPANY EXPERIMENTAL STATION WILMINGTON, DELAWARE 19898

ABSTRACT: THE USE OF DITHIANE CHEMISTRY TO SYNTHESIZE FUNCTIONALIZED AZOMETHINE YLIDES WHICH ARE THEN EMPLOYED IN [3+2] CYCLOADDITION CHEMISTRY IS DESCRIBED. THE ADVANTAGES OF THIS METHODOLOGY AS WELL AS AN APPROACH TO THE LYCORENINE ALKALOID SYSTEM ARE PRESENTED.

A number of recent reports have described the use of amino acids and their alkyl or silyl esters as precursors to azomethine ylides, employing a condensation reaction with aldehydes for their genesis.¹⁻³ The dipoles thus formed are readily **trapped by a C-C multiple bond to yield a variety of derivatives of pyrrolidine. Of particular utility is the reaction of amino esters of type 1 with an unsaturated aldehyde such as 2 to afford the bicyclic adducts 3, derived from an intramolecular reaction mode. This ring-forming transformation has been shown to proceed with a high degree of stereoselectivity about the newly formed C-C bonds as the process**

effectively annulates a pyrrolidine ring to an internal olefin. Reactions such as this, which construct two carbon-carbon bonds <u>s</u>imultaneously, are relatively rare in $\,$ organic synthesis and the few on record have found extensive application. We wish to **report a further extension of this cycloaddition methodology to include functionalized olefin-aldehydes of general structure 4 (Scheme I), possessing a dithiane group** alpha to the carbonyl moiety and offering a number of advantages in their construc**tion and subsequent transformations.**

ovrrol idines 7, products of an intramolecular [3+2] cycloaddition reaction of the Aldehydes 4 condense with N-alkyl glycinates 5 to yield the annulated presumed intermediate atomethine ylides 6 .4 The substrate 4a is **readily prepared in** a one-pot reaction by alkylation of 2-lithio-1,3-dithiane with 4-bromobut-1-ene **followed by a subsequent deprotonation with n-butyllithium and formylation with dimethylformamide.5 The aldehyde 4b Is prepared in a similar manner with 5-bromopent-1-ene. The synthesis of the styrene-derived dithiane aldehyde 4c is shown in Scheme 2. Ozonolysis of 1-phenylcyclopentene (8), followed by treatment with tosic acid in methanol affords the corresponding aldehyde dimethyl acetal" 9, which is** converted into the desired crystalline dithiane 10 by 1,3-propanedithiol. Wittig
methylenation of 10 and formylation of the dithiane anion of the resulting product **provides the substrate 4c.**

(a) O₃, MeOH / CH₂Cl₂ (95%) (b) HS(CH₂)₃SH BF₃°OE1₂ (54%) (c) Ph₃P=CH₂ (84%) (d) n-BuLI / DMF (32%)

The major product of these dipolarcycloadditions is the one in which the newly formed bicyclic system is cis fused and the pendant ester group is oriented cis to the hydrogen(s) at the ring junction."^{4,'} These assignments are supported b **the chemical shift and coupling constant exhibited by Ha: 7a, 63.36 (d, J=9); 7b, 63.11 (d, J=7); 7c, 63.29 (d, J=8); 7d, 63.83 (5). The successful cyclization of these functfonalized olefin aldehydes overcomes sane limitations observed in the** "parent" cases. For example, the cycloaddition reaction fails totally for 6-heptenal **and 6-phenyl-6-heptenal, presumably a consequence of the competing aldol polymerization pathway often found in enolizable aldehydes.** the use of the silyl esters"^{a,D} **Attempted modifications such as of alpha amino acids or the free amino acids them selves** . **successful in some other recalcitrant cases. did not yield any dipolarcycloaddition products in these examples.**

Some useful transformations of the functionalized cycloadducts are presented in Scheme 3. Mercuric ion-catalyzed hydrolysis of the dithiane moiety in cyclo**adducts such as 13 yields the ketone 12 while maintaining the cis ring fusion (Ha: 3.51 (d,J=9). The ester group can be reduced to the alcohol 14, potential intermediate for ring expansion chemistry,*sb or totally removed by the methodology of Rapoport* to provide the pyrrolidine derivative 15. Finally, the dithiane group** itself may be reductively removed with nickel boride^s to afford the unsubstituted **case 16. Such a transformation "remedies" the failure of some enolitable aldehydes to undergo the cycloaddition and afford products such as 16 directly.**

A large number of naturally occurring alkaloids contain a cis-fused perhydroindole ring system as a key structural element, most notably members of the
Amaryllidaceae family such as crinine, tazettine, lycorenine, and mesembrine.¹⁰ A Amaryllidaceae family such as crinine, tazettine, lycorenine, and mesembrine.¹⁰ **model study for the synthesis of the antihypertensive alkaloid lycorenine is presented in Scheme 4. An important consideration for such an approach to lycorenine** based on azomethine ylide cycloaddition chemistry is the regi<u>ochemistry</u> intramolecular reaction in which the C-C multiple bond is an allene. Thus, the **allenic aldehyde 20 is prepared from ethyl 1,3-dithiane-Z-carboxylate (17; and 5-bromo-1,2-pentadiene (18)" to yield 19 via the method of Eliel,Q followed by reduction with lithium aluminum hydride ax oxidation by DMSD/oxalyl chloridej3 Condensation of 20 with sarcosfne ethyl ester provides the two cycloadducts 21 C63.62 (d,l, J=9), 4.91 (d,l, J=2), 5.14 (d,l, J=2) 19% 1 and the 22 Ca3.61 (s,l), 5.47 (s,l) 28% I. Fortunately, the observed regiochemistry favors the desired isomer 22 in this unoptimized reaction and is opposite to that reported by Le Bell' in an analogous study involving intramolecular nitrone-allene [3+2) cycloadditions. Therefore, this chemistry provides a ready access to the lycorenine system and represents a novel approach to the natural product and its cogeners.**

SCHEME 4

21

RATIO 2:3

22

RETROSYNTHETIC PLAN

In summary, the use of alpha dithiane-substituted olefin aldehydes as precursors to functionalized azanethine ylides has been shown to offer several advantages: 1) the preparation of the olefin-aldehydes is greatly facilitated by the use of' dithiane anion chenistry; 2) the 1,3-dithiane moiety is thermally stable, allowing sluggish cycloaddition reactions to be carried out; 3) the "protection" of the labile enolizable hydrogens of the aldehyde group now permits cycloaddition reactions which fail in the parent case to be performed successfully; and 4) the versatile dithiane group is an effective agent for the introduction of other functionality in the resulting cycloadducts.

REFERERCES

- 1. **P. N. Confalone and E. M. Huie, J. Am Chem. Sot., 1984, 106, 7175.**
- 2. (a)C.-L. J. Wang, W. C. Ripka, and P. N. Confalone, <u>Tetrahedron Lett.</u>, 1984,
25, 4613; (b) P. N. Confalone and E. M. Huie, <u>J. Org. Chem.</u>, 1983, <u>48</u>, 2994; (c) **R. Grigg, M. F. Aly, U. Sridharan. and S. Th anpatanagu** , **J. Chem. Sot.,** <u>J.</u> **Commun., 1984, 182; (d) R. Grigg, S. Thianpatanagul, J. Chem. Sot., Chem. Cornnun.,** 1984, **180.**
- 3. **For related chemistry see: P. DeShong, D. A. Kell, and D. R. Sidler, J. Org.** Chem., 1985, 50, 2309 and leading references therein.
- **4. A typical cyclization procedure is as follows: A solution of.aldehyde 4 (5** mmol), aminoacid ester 5 (10 mmol) and about 10 mg camphorsulfonic acid in 15 mL **xylene is heated under reflux using a Dean-Stark trap containing molecular sieves until the aldehyde is consuned (TLC analysis, 1-3 days). The solvent is removed under vacuum, and the product 7 is purified via column chromatography on silica gel.**
- **5. K. F. Burri, R. A. Cardone, W. Y. Chen, and P. Rosen, J. Am. Chem. Sot., 1978. 100, 7069.**
- **6. S. L. Schreiber, R. E. Claus, and J. Reagan, Tetrahedron Lett., 1982, 23, 3867.**
- **7.** $\frac{1}{2}$ related ring systems see: $\frac{1}{2}$ (b) N. A. eBel and E. G. Banuc **1971,s 2441); (c) P. B. Woller, and N. H. Cromwell, J. Org. C en., 1970,35, 888.**
- 8. (a) K. E. Harding and S. R. Burks, <u>J. Org. Chem., 1984, 49</u>, 40; (b) D. St. C. Black and J. E. Doyle, <u>Adv. Heterocyclic Chem.</u>, Padgett, and H. Rapoport, J. Am. Chem. Soc., 1976, 98, 7448.
- 9. **L. A. Flippin and M. A. Dombroski, Tetrahedron Lett., 1985,26, 2977; R. B. Boar, D. W. Hawkins, J. F. McGhie, and D. H. R. Barton, J. Chem. Sot. Perkin I, 1973, 654.**
- 10. **For general reviews of this field see: (a) M. Sanisbury, In "Rodds Chemistry of Carbon Compounds, IVB"; S. Coffey, Ed.; Elsevier Scientific, Amsterdam, 1977. pp. 16#-200; (b) "The Alkaloids"; Specialist Reports; The Royal Society of Chemistry: London,** 1969-1982; **Vol. 1-12; (c) "The Alkaloids"; Academic Press: New York,** 1950-1983; **Vol. 1-21.**
- 11. R. M. Coates, P. D. Senter, **and W. R. Baker, J. Org. Chem., 1982, 47, 3597.**
- **12. E. L. Eliel and A. A. Hartmann, J. Org. Chem.. 1972, 2, 505.**
- **13. A. J. Mancuso, S.-L. Huang, and D. Swern, J. Org. Chem., 1978, 43, 2480.**
- **14. N. A. LeBel and E. Banucci, J. Am.** Chem. Sot.. **1970, 92,** 5278.

(Received in **USA 14 February 1986)**